
A Hybrid Type System for Lock-Freedom of

Mobile Processes

Naoki Kobayashi1 and Davide Sangiorgi2

1 Tohoku University
2 Università di Bologna

Abstract. We propose a type system for lock-freedom in the π-calculus,
which guarantees that certain communications will eventually succeed.
Distinguishing features of our type system are: it can verify lock-freedom
of concurrent programs that have sophisticated recursive communication
structures; it can be fully automated; it is hybrid, in that it combines
a type system for lock-freedom with local reasoning about deadlock-
freedom, termination, and confluence analyses. Moreover, the type sys-
tem is parameterized by deadlock-freedom/termination/confluence anal-
yses, so that any methods (e.g. type systems and model checking) can
be used for those analyses. A lock-freedom analysis tool has been imple-
mented based on the proposed type system, and tested for non-trivial
programs.

1 Introduction

In this paper, we attack the problem of verifying concurrent programs that create
threads and communication channels dynamically. More specifically, we choose
the π-calculus as the target language, and consider the problem of verifying the
lock-freedom property, which intuitively means that certain communications (or
synchronizations) will eventually succeed (possibly under some fairness assump-
tion). Lock-freedom is important for communication-centric computation models
like the π-calculus; indeed, in the pure π-calculus, most liveness properties can
be turned into the lock-freedom property. For example, the following properties
can be reduced to instances of lock-freedom: Will the request of accessing a re-
source be eventually granted? In a client-server system, will a client request be
eventually received from the server? And if so, will the server eventually send
back an answer to the client? In multi-threaded programs, can a thread eventu-
ally acquire a lock? And if so, will the thread eventually release the lock? The
lock-freedom property has also applications to other verification problems and
program transformation, such as information flow analysis and program slicing
(dependency analysis in general). Verification of liveness properties such as lock-
freedom is notoriously hard in concurrency. In formalisms for mobile processes,
such as the π-calculus, it is even harder, because of dynamic creation of threads
and first-class channels. In these formalisms, type systems have emerged as a
powerful means for disciplining and controlling the behaviors of the processes.

Type systems for lock-freedom include [1, 11, 12, 21, 22]. An automatic veri-
fication tool, TyPiCal [10], has been implemented based on Kobayashi’s sys-
tem [12]. The expressive power of such type systems is, however, very limited.
This shows up clearly, for instance, in the treatment of recursion. For example,
even primitive recursive functions cannot be expressed in Kobayashi’s lock-free
type system, since it ignores value-dependent behaviors completely.

In this paper, we tackle lock-freedom by pursuing a different route. We over-
come limitations of previous type systems by combining the lock-freedom analy-
sis with two other analysis: deadlock-freedom and termination. The result, there-
fore, is not a “pure” type system, but one that is parametric in the techniques
employed to ensure deadlock-freedom and termination. Such techniques may
themselves be based on type systems (and indeed in the paper we indicate such
type systems, or develop them when needed), but could also use other meth-
ods (model checking, theorem provers, etc.). The parameterization allows us to
go beyond certain limits of type systems, by appealing to other methods. For
instance, a type system, as a form of static analysis, may have difficulties in
handling value-dependent behaviours (even very simple ones), which are more
easily dealt with by other methods such as model checking.

Roughly, we use the deadlock-freedom analysis to ensure that a system can
reduce if some of its expected communications have not yet occurred. We then
apply a termination analysis to discharge the possibility of divergence and guar-
antee lock-freedom (i.e., the expected communication will indeed occur). The
reasons for appealing to deadlock-freedom are that powerful type-based ana-
lyzers exist (notably Kobayashi’s systems [13]), and that deadlock-freedom is
a safety property, which is easier than liveness to verify in other verification
methods such as model checking.

A major challenge was to be able to apply the deadlock and termination
analysis locally, to subsystems of larger systems. The local reasoning is partic-
ularly important for termination. A result forcing a global termination analysis
would not be very useful in practice: first, valid concurrent programs may not
terminate (e.g., operating systems); second, even if a program is terminating, it
can be extremely hard to verify it if the program is large, particularly in lan-
guages for mobile processes such as the π-calculus that subsume higher-order
formalisms such as the λ-calculus.

Very approximately, our hybrid rule for local reasoning looks as follows:

|=DF P |=Ter P

∆ ⊢LT P
(*)

where |=DF P and |=Ter P indicate, respectively, that P is deadlock-free and
terminating, and ∆ ⊢LT P is a typing judgment for lock-freedom. The type
environment ∆ captures conditions, or “contracts”, on the way P interacts with
its environment, of the kind “P will eventually send a message on a” and “if
P receives a message on a, then P is lock-free afterwards”. Such contracts are
necessary for the compositionality of the type system for lock-freedom (i.e., local
reasoning on lock-freedom). We use Kobayashi’s lock freedom types [12], which
refine those of the simply-typed π-calculus with channel usages, to express the

contracts. Therefore we add rule (∗), as an “axiom”, to the rules of Kobayashi’s
lock freedom type system [12].

The contracts in ∆, however, are completely ignored—and are not guaranteed—
in the premises of rule (∗). As a consequence, the resulting type system is un-
sound. In other words, knowing that P is deadlock-free and terminating is not
sufficient to guarantee compositionality and local reasoning. As an example of
missing information, P being terminating ensures that P itself has no infinite
reductions; but it says nothing on the behaviour of P after it receives a message
from other components in the system. (Indeed rule (∗) is only sound if applied
globally, to the whole system.)

The first refinement we make for the soundness of rule (∗) is to replace
deadlock-freedom and termination with more robust notions, which we call, re-
spectively, robust deadlock-freedom under ∆, written ∆ |=RD P , and robust termi-
nation, written |=RTer P . These stronger notions approximately mean that P is
deadlock-free or terminating after any substitution (P may be open, and there-
fore contain free variables), and any interaction with its environment; ∆ |=RD P
further ensures that P fulfills certain obligations in ∆. The problems of verifying
robust deadlock-freedom and robust termination are more challenging than the
ordinary ones, due to the additional requirements (e.g., quantifications over sub-
stitutions and transition sequences). Existing type systems for deadlock-freedom,
notably [13], do meet however the extra conditions for robust deadlock-freedom.
We also show how to tune type systems for ordinary termination in a generic
manner so to guarantee the stronger property of robust termination. We should
stress nevertheless that ∆ |=RD P and |=RTer P are semantic requirements: our
type system is parametric on the verification methods that guarantee them—one
need not employ type systems.

Even with the above refinement of the deadlock-freedom and termination
conditions, the hybrid rule (∗) remains unsound. The reason is, roughly, the
same as why assume-guarantee reasoning in concurrency often fails in the pres-
ence of circularity. In fact, the judgment ∆ ⊢LT P can be considered a kind of
assume-guarantee reasoning, where ∆ expresses both assumptions on the envi-
ronment and guarantees about P ’s behavior. To prevent circular reasoning, we
add a condition nocap(∆) that intuitively ensures us that P is independent of
its environment, in the sense that P will fulfill its obligations (to perform cer-
tain input/output actions) without relying on its environment’s behavior. (For
example, suppose that there is an obligation to send a message on channel a.
The process a[1], which sends 1 on a, is fine, since it fulfills the obligation with
no assumption. On the other hand, the process b(x). a[x], which waits to receive
a value on b before sending x on a, is not allowed since it fulfills the obligation
only on the assumption that the environment will send a message on b.) This
leads to the following hybrid rule:

∆ |=RD P |=RTer P nocap(∆)

∆ ⊢LT P
(LT-Hyb)

The resulting type system guarantees that any well-typed process P is weakly
lock-free, in the sense that if an input/output action is declared in P as an action
that should succeed, and if P −→∗ Q, then the action has already succeeded in
P −→∗ Q or there is a further reduction sequence from Q in which the action
will succeed. This is similar to the way in which success of passing a test is
defined in fair should/must testing [4] and bisimulation, (and also in accordance
with other definitions of similar forms of liveness for π-calculus such as [21]).

We have also considered a stronger form of lock-freedom, guaranteeing that
the marked actions will eventually succeed on the assumption that the scheduler
is strongly fair. We show that our type system can be strengthened to guaran-
tee the strong lock-freedom by adding a condition of partial confluence to rule
LT-Hyb above. Again, the partial confluence is only required locally; the whole
program need not be confluent.

The verification framework outlined above for lock-freedom (including an au-
tomated robust termination analysis) has been implemented as an extension of
TyPiCal program analysis tool (except the extension to strong lock-freedom;
adding this on top of the present implementation would be tedious but not diffi-
cult). We have succeeded in automatically verifying several non-trivial programs,
such as symbol tables and binary tree search. These examples are non-trivial be-
cause lists and trees are implented as networks of processes connected by chan-
nels, and they grow dynamically (both channels and processes are dynamically
created and linked). Recursive structures of the kind illustrated in these exam-
ples are common in programming languages for mobile processes (the examples
in fact, were taken or inspired from Pict programs).

2 Target Language

Syntax We write L for the set of links (also called channels), and V for the
(disjoint) set of variables. We use meta-variables a, b, c, . . . and x, y, z, . . . for
links and variables, respectively. We write N for the set L∪V ∪{true, false} of
names (sometimes called values), where true and false are the usual boolean
values. We use meta-variables u, v, w for names. The grammar is the following:

P ::= 0 | vχ[w̃]. P | vχ(ỹ). P | (P |Q) | ∗P | (νa)P | if v then P else Q

Here, χ is either ◦ or •, and w̃ abbreviates a possibly empty sequence w1, . . . , wn.
The constructs are the standard ones of the polyadic π-calculus: nil, output and
input prefixes, parallel composition, replication (∗P behaves like infinitely many
copies of P running in parallel), restriction, and a conditional. The only difference
is the annotation χ in prefixes, which indicates whether the action is expected
to succeed (symbol ◦) or not (symbol •). (In the type inference of TyPiCal these
annotations are actually inferred, in the sense that if the analysis succeed then
a set of prefixes that will eventually succeed is marked, see Section 5.) We call a
prefix marked if its annotation is ◦. We usually omit the • annotation, thus for
example a(x).P stands for a•(x). P . As usual, restriction and input prefix are

binders. A closed process has no free variables. We often omit trailing 0, and
write vχ[w̃] for vχ[w̃].0. We also write vχ.P and vχ.P for vχ[]. P and vχ(). P
respectively. In examples, we use an extension of the above language with natural
numbers, list, etc. as they are straightforward to accommodate.

Typing The type systems that we will propose are defined on top of the simply-
typed π-calculus (ST). The set of simple types is given by:

S ::= Bool | ♯[S1, . . . , Sn]

♯[S1, . . . , Sn] is the type of channels that are used for transmitting tuples consist-
ing of values of types S1, . . . , Sn. A type judgment is of the form Γ ⊢ST P . A type
environment Γ is a mapping from names to simple types, with the constraint
that true and false are mapped to Bool, and that the links are mapped to
channel types. Γ, ṽ : S̃ indicates the type environment obtained by extending Γ
with the type assignments ṽ : S̃, with the understanding that for all vi already
defined in Γ it should be Γ (vi) = Si. The standard typing rules are omitted.

Operational Semantics We use the standard (early) labeled transition relation

P
η
−→ Q for the π-calculus. Here, η, called a transition label, is either a silent

action τ , an output action (νc̃) a [̃b], or an input action a [̃b]. See Appendix A

for the definition of the transition relation. We write
τ
−→

∗
for the reflexive and

transitive closure of
τ
−→; we write P

τ
−→ and P

τ
−→

∗
if there is P ′ s.t. P

τ
−→ P ′

and P
τ
−→

∗
P ′, respectively.

We extend the above transition relation to a typed transition relation, to
show how a type environment evolves when a process performs a transition.

Γ ⊢ST P
η
−→ Γ ′ ⊢ST P ′ holds if: (1) Γ ⊢ST P ; and (2) if η = τ then Γ = Γ ′;

otherwise if η is an output (νc̃) a [̃b] or an input a [̃b] and Γ (a) = ♯[S̃], then

Γ ′ = Γ, b̃ : S̃ . Note that Γ ⊢ST P
η
−→ Γ ′ ⊢ST P ′ implies Γ ′ ⊢ST P ′. We write

Γ0 ⊢ST P0
η1
−→ · · ·

ηk−→ Pk to mean that Γ0 ⊢ST P0, and there are Γ1, ..., Γk s.t.

for all i < k it holds that Γi ⊢ST Pi

ηi+1

−→ Γi+1 ⊢ST Pi+1.

Deadlock-Freedom and Lock-Freedom A prefix is at top level if it is not under-
neath another input/output prefix or underneath a replication.

Definition 1 (deadlock-freedom) P is deadlock-free if, whenever P
τ
−→

∗
Q

and Q has at least one marked prefix at top level, then Q
τ
−→.

Deadlock-freedom indicates only the possibility for the system to evolve further;
on the other hand, lock-freedom indicates the eventual success of marked actions
at top-level. In the definition of lock-freedom, we track the success of a specific
action (as several marked actions may simultaneously appear at top-level) by
tagging it. We then demand success for all possible taggings. We call tagged a
process in which exactly one unguarded and unreplicated prefix—the prefix that
we wish to track—has the special annotation 2 (instead of ◦ as in the marked
prefixes). Transitions of tagged processes are defined as for the untagged ones,

except that the labels of transitions emanating from the tagged prefix are also

tagged. We call a tagged τ -transition, written P
τ2

−→ P ′, a success.

Definition 2 ((weak) lock-freedom) A tagged process P is successful if when-

ever P
τ
−→

∗
Q then Q

τ
−→

∗ τ2

−→. Given an untagged process P , the tagging of P
is the set of tagged processes obtained from P by replacing the annotation of a
marked prefix at top level with 2. Process P is (weakly) lock-free if whenever

P
τ
−→

∗
Q then all processes in the tagging of Q are successful.

A sequence of transitions
τ
−→ or

τ2

−→ is full if it is finite and ends with
an irreducible process, or if it is infinite. A sequence of transitions is strongly
fair if, intuitively, any τ -action that is enabled infinitely often will eventually
succeed (see [3, 11] for a formal definition of strong fairness in the π-calculus).
See Appendix A.2 for a note on the difference between weak and strong lock-
freedom.

Definition 3 (strong lock-freedom) P is strongly lock-free if whenever P
τ
−→

∗

Q then every full and strongly fair transition sequence of each process in the tag-

ging of Q contains the success transition
τ2

−→.

3 Type System for Lock-Freedom

We introduce the type systems for weak/strong lock-freedom. They are obtained
by augmenting Kobayashi’s type system [12] with hybrid rules appealing to
deadlock/termination/confluence analyses.

3.1 Review of Previous Type System for Lock-Freedom

As mentioned in Section 1, to enable local reasoning about lock-freedom in terms
of deadlock and termination analyses, we need to express some contracts between
a process and its environment. We reuse the type judgments of Kobayashi’s lock-
freedom type system [12] to express the contracts. A type judgment is of the form
∆ ⊢LT P , where ∆ is a type environment, which expresses both requirements on
the behavior of P , and assumptions on its environment. Ordinary channel types
are extended with usages, which express how each communication channel is
used. For example, ♯?.! [Bool] describes a channel that should be first used for
receiving a boolean once, and then for sending a boolean once. A channel of
type ♯? [♯! [Bool]] should be first used for receiving a channel once, and then the
received channel should be used once for sending a boolean. (! and ? express an
output and an input respectively, and “.” denotes the sequential composition;
the whole syntax of usages is given in Appendix B.)

In order to express both assumptions on the environment (like, “a process
can eventually receive a message from its environment”) and guarantees by the
process (like, “a process will certainly send a message”), each action (! or ?) in

a usage is further annotated with capability levels and obligation levels, which
range over the set of natural numbers extended with ∞. If a capability level of
an action is finite, then that action is guaranteed to succeed (in other words, its
co-action will be provided by the environment) if it becomes ready for execution
(i.e., it is at top-level). If an obligation level of an action is finite, then that
action must become ready for execution, only by relying on capabilities of smaller
levels. For example, the type judgment a : ♯?∞

0
[Bool], b : ♯!1

∞

[Bool] ⊢LT P means

that P has a capability of level 0 to receive a boolean on channel a (but not an
obligation to receive it) , and P has an obligation of level 1 to send a boolean on
b. (Here, the superscript of ! or ? is the obligation level, and the subscript is the
capability level.) Thus, P can be b[true] or a(x). b[x], but not a(x).0. Thanks
to the abstraction of process behavior by usages, the problem of checking lock-
freedom of a process is reduced to that of checking whether the usage of each
channel is consistent in the sense that, for each capability of level t, there is a
corresponding obligation of level less than or equal to t.

To understand how this kind of judgment can be used for compositional rea-
soning about lock-freedom, consider the (deadlocked) process a◦(x). b[x] | b◦(x). a[x].
We have the following judgment for subprocesses:

a : ♯?0
0
[Bool], b : ♯!1

∞

[Bool] ⊢LT a◦(x). b[x]

a : ♯!1
∞

[Bool], b : ♯?0
0
[Bool] ⊢LT b◦(x). a[x]

For the entire process, we can simply combine both type environments by com-
bining usages pointwise:

a : ♯?0
0
| !1

∞

[Bool], b : ♯!1
∞

| ?0
0
[Bool] ⊢LT a◦(x). b[x] | b◦(x). a[x]

Now, the capability level of the input on a (which is 0) is smaller than the obli-
gation level of the corresponding output on a (which is 1); this indicates a failure
of assume-guarantee reasoning (the assumption made by the left subprocess is
not met by the guarantee by the right subprocess). Thus, we know the process
may not be lock-free. On the other hand, if we replace the subprocess in the
righthand side with a[true]. b(x), then we get:

a : ♯?0
0
| !0

0
[Bool], b : ♯!1

1
| ?1

1
[Bool] ⊢LT a◦(x). b[x] | a[true]. b◦(x)

The capability of each action is matched by the obligation of its co-action, which
implies that the process is lock-free. This is similar to the standard assume-
guarantee reasoning; the employment of such reasoning in the type system (to
enable fully automated, compositional reasoning), together with the mobility of
the π-calculus, however, inevitably make some technical details complex.

Figure 1 in Appendix B summarizes the syntax of usages and types, and
typing rules of Kobayashi’s lock-freedom type system [12].

3.2 Robust Deadlock-Freedom/Termination/Confluence

To enable local reasoning in the new type system for lock-freedom that we will
present, we introduce a strengthening of the notions of deadlock-freedom, ter-
mination, and confluence.

A substitution σ = [w̃/x̃] respects Γ = ṽ : S̃ if σΓ = σ̃v : S̃ is well-defined. A
substitution σ is closing for Γ if σ respects Γ and σΓ has no variables. A process
is robustly terminating if it cannot diverge, after any sequence of transition that
conforms to the base type system ST.

Definition 4 (robust termination) A process P is terminating if there is no

infinite internal transition sequence P
τ
−→ P1

τ
−→ P2

τ
−→ · · ·. An (open) process

P is robustly terminating under Γ , written Γ |=RTer P , if Γ ⊢ST P , and for
every closing substitution σ for Γ and for any Q, k, and η1, · · · ηk such that

σΓ ⊢ST σP
η1
−→ · · ·

ηk−→ Q, the derivative Q is terminating.

We say that ∆ is closed if dom(∆) ∩ V = ∅. We write rel(∆) intuitively to
mean that each capability in ∆ is guaranteed by a corresponding obligation; and
ob !(L) for the level of the obligation to send a message: again, precise definitions
are in Appendix B.

In the definition of robust deadlock-freedom below, the first condition say
that P is deadlock-free when it is executed by itself, and that P either fulfills its
obligations or reduces further. The other conditions say that the robust deadlock-

freedom is preserved by substitutions and transitions. The relation ∆
η
−→ ∆′ (see

Appendix B) expresses the increase/decrease of capabilities/obligations in ∆ by

the transition η. For example, a : ♯?0
∞

[♯!1
∞

[Bool]]
a[b]
−→ a : ♯

0
[♯!1

∞

[Bool]], b : ♯!1
∞

[Bool]
holds (where the usage 0 indicates that the channel cannot be used at all). Thus,
a : ♯?0

∞

[♯!1
∞

[Bool]] |=RD P means that P will eventually perform an input on a, and
then send a boolean on the received channel, unless P at some point diverges.

Definition 5 (robust deadlock-freedom) The relation ∆ |=RD P is the largest
relation such that ∆ |=RD P implies all of the following conditions.

1. If ∆ is closed and rel(∆), then: (i) P is deadlock-free; (ii) If ob!(∆(a)) 6=∞,

then either P
(νec) a[eb]
−→ or P

τ
−→; and (iii) If ob?(∆(a)) 6=∞ then either P

a[eb]
−→

or P
τ
−→.

2. If [v 7→ a]∆ is well-defined, then [v 7→ a]∆ |=RD [v 7→ a]P .

3. If P
η
−→ P ′ and, furthermore, when η is an input, all names received are

fresh, then ∆
η
−→ ∆′ and ∆′ |=RD P ′ for some ∆′.

We say that P is robustly deadlock-free under ∆ if ∆ |=RD P holds.

Partial confluence means that any τ -transition commutes with any other
transitions. To define the partial confluence, we assume that each prefix is

uniquely labeled (as in [3]), and extend the transition relation to
η,S
−→ where

S is the set of the labels of the prefixes involved in the transition: see [15]. Ro-
bust confluence indicates partial confluence after any sequence of transition that
conforms to the base type system ST.

Definition 6 (robust confluence) A process P is partially confluent, if when-

ever P1
τ,S1
←− P

η,S2
−→ P2, either η = τ ∧ S1 = S2, or P1

η,S2
−→≡

τ,S1
←− P2. A process

P is robustly confluent under Γ , written Γ |=RConf P , if Γ ⊢ST P and for any
closing substitution σ that respects Γ and for any Q, k, and η1, · · · ηk such that

σΓ ⊢ST σP
η1
−→ · · ·

ηk−→ Q, the derivative Q is partially confluent.

While termination, deadlock-freedom, and confluence are frequently discussed
in the literature, we are not aware of previous work that defines the robust
counterparts above and verification methods for them.

We have proved that robust deadlock-freedom is guaranteed by Kobayashi’s
type system for deadlock-freedom [13]. In applications of robust deadlock-freedom,
it is often the case that the environment ∆ needed is of a restricted form, so that
∆ |=RD P then boils down to the verification of a few simple behavioral prop-
erties for which other type systems and model checkers can also be used. For
example, if ∆ is a : ♯!0

∞

[Bool], then ∆ |=RD P only means that P is deadlock-free
and P will eventually send a boolean on a unless it diverges. Robust confluence
is guaranteed, for instance, by types systems for linear channels [14] and race-
freedom [20]; other static analysis methods such as model checking could also be
used. Verification of robust termination is discussed in Section 4.

3.3 Hybrid Typing Rules

We now introduce the new rules LT-Hyb (for weak lock-freedom), and SLT-Hyb
(for strong lock-freedom).

∆ |=RD P Er(∆) |=RTer P nocap(∆)

∆ ⊢LT P
(LT-Hyb)

∆ |=RD P Er(∆) |=RTer P Er(∆) |=RConf P nocap(∆)

∆ ⊢SLT P
(SLT-Hyb)

Here, Er(∆) is the simple type environment obtained from ∆ by removing
all usage annotations. The condition nocap(∆) holds if, intuitively, ∆ describes
a process that fulfills its obligations without relying on the environment. As
mentioned in Section 1, this is used to avoid circular, unsound, assume-guarantee
reasoning. The precise definition of nocap(∆), given in Appendix B, is subtle; for
nested channel types, the nocap condition depends on whether a channel is used
for input or output. For example, nocap(♯?0

∞

[♯!0
∞

[]]) holds but nocap(♯!0
∞

[♯!0
∞

[]])
does not. In the rule for strong lock-freedom, the robust confluence ensures that
once a marked prefix is enabled, it cannot be disabled by any other transitions.
See Example 4 in Appendix A.2 for a non-trivial example, for which the rule
LT-Hyb fails to guarantee strong lock-freedom.

We write ∆ ⊢LT P if it is derivable by using the typing rules in Appendix B
and LT-Hyb, and write ∆ ⊢SLT P if it is derivable by using SLT-Hyb instead of
LT-Hyb. The theorem below states the soundness of the type systems. Its proof
is non-trivial because of the presence of the hybrid rules; for instance, conditions
such as nocap(∆) are not preserved by transitions, so in the proof we had to
refine and extend the type systems. See the extended version [15].

Theorem 1 (lock-freedom). If ∅ ⊢LT P , then P is (weakly) lock-free. If ∅ ⊢SLT
P , then P is strongly lock-free.

Example 1. Consider the following processes.

Clients
def
= ∗(νr1) (fact

◦
[rnd(), r1] | r1

◦(x).0)

Server
def
= (νfact it) (∗fact (n, r). fact it [n, 1, r]

| ∗fact it (n, x, r). if n = 0 then r[x] else fact it [n− 1, x× n, r])

The process Server creates an internal communication channel fact it (used
for computing factorial numbers in a tail-recursive manner), and waits on fact
for a request [n, r] on computing the factorial of n. Upon receiving a request, it
returns the result on r. Client consists of infinitely many copies of the process
that creates a fresh channel r1 for receiving a reply, sends a request [rnd(), r1]
(where rnd() creates a random number) and then waits for the result on r1.

Let ∆ be fact : ♯∗?0
∞

[Nat, ♯!1
∞

[Nat]]. Then, we have ∆ |=RD Server , Er (∆) |=RTer

Server , and Er(∆) |=RConf Server with nocap(∆). Thus, by using SLT-Hyb, we
obtain ∆ ⊢SLT Server . From this judgment and fact : ♯∗!∞

0
[Nat, ♯!1

∞

[Nat]] ⊢SLT
Clients , we obtain: ∅ ⊢SLT (νfact) (Server |Clients). This means that all the
clients can eventually receive replies. Note that the whole process diverges (since
there are infinitely many clients), but we can derive strong lock-freedom by local
reasoning based on SLT-Hyb. See Appendix B.3 for futher examples.

Remark 1. The present side condition nocap(∆) for LT-Hyb is sometimes too
restrictive for local reasoning. For example, consider C |S1 |S2, where C sends a
request to S1, which consults S2 to answer the request. Then, we have to apply
LT-Hyb to S1 |S2 rather than S1 alone, since S1 makes an assumption that S2

will answer. See [15] for an extension to relax the nocap condition.

4 Types for robust termination

In this section, we discuss type systems for guaranteeing robust termination. Ter-
mination of a term means that all its reduction sequences are of finite length.
Robust termination guarantees that termination is maintained when the process
interacts with its environment. Termination is strictly weaker than robust ter-

mination. Consider for instance the term P
def
= c[b] | c(x).(x | ∗a.x). The process

P has one reduction only, and therefore it is terminating. It is indeed typable in
the simplest of the type systems in [9]. However, P is not robustly terminating.
It can interact with other processes via the input at c and, in doing so, it may
receive a resulting in the non-terminating derivative c[b] | a | ∗a.a.

We define some abstract conditions with which a type system for termi-
nation also guarantees robust termination; we then discuss refinements of the
conditions. We denote by Ter a generic type system for termination, and with
Θ ⊢Ter P a judgment in Ter. We recall that ST indicates the types and the type
systems of the simply-typed π-calculus (Section 2).

Definition 7 Let f be a function from the types of Ter to those of ST. We say
that Θ ⊢Ter P is f -admissible if both Θ ⊢Ter P and f(Θ) ⊢ST P hold and, for all

closing f(Θ)-substitutions σ, whenever σf(Θ) ⊢ST σP
η1
−→ · · ·

ηk−→ P ′, there is
Θ′ s.t. Θ′ ⊢Ter P ′. (Where f(Θ) is the ST type environment obtained by replacing
each type assignment v : T in Θ with v : f(T).)

f -admissibility ensures us that f can be used to turn a typing Θ ⊢Ter P into a
valid ST typing and, furthermore, typing in Ter is preserved under (ST-typed)
transitions, hence we have:

Theorem 2. Suppose Ter is a type system that guarantee termination (i.e.,
whenever ∆ ⊢Ter Q, for ∆ closed, then Q terminates), and f a function from
the types of Ter to those of ST. If Θ ⊢Ter P is f -admissible then P is robustly
terminating under f(Θ).

If Θ ⊢Ter P and f(Θ) ⊢ST P , and provided that the definition of f is com-
positional, then f -admissibility normally follows from subject-reduction for Ter
and injectivity of f on the set of channel types used in Θ. See Appendix C.

5 Implementation

We have implemented the new weak lock-freedom analysis as a feature of TyP-
iCal Version 1.6.0 [10]. TyPiCal takes as an input a program written in the
π-calculus, and marks all input/output prefixes that are guaranteed to succeed.

The original type system for lock-freedom (reviewed in Section 3.1) had been
implemented already [12, 13]. A major challenge in the implementation of the
new system was to automate verification of the robust termination property. We
have modified the type systems of Deng and Sangiorgi [9], so that the resulting
systems can guarantee robust termination, and also so to make them more suited
for automatic verification (e.g., using heuristic and incomplete algorithms when
the original ones were NP-complete). We also integrated them with a termination
analysis based on size-change graphs [2]. See the extended version for details.

We have applied the implementation to non-trivial programs (including the
examples in Section 3 and Appendix B.3), and verified them fully automatically
(without any type annotations). See [15] for the benchmark results.

6 Related Work

Several type systems for lock-freedom (sometimes referred to by different names)
have been already proposed [1, 11, 12, 18, 21, 22]. Our type system substantially
improves the expressiveness of previous type systems; for instance, it can handle
non-trivial recursive structures (e.g., the binary trees as in Example 4), and
value-dependent behaviors. This is possible through a parameterization that
appeals to other analyzers, in particular those for deadlock freedom (so that
more powerful analyzers make the lock-freedom type system more powerful too).

Another important point is that none of the previous type systems for lock-
freedom, except Kobayashi’s one [12], has been implemented. In fact, most of
the type systems classify channels into a few usage patterns, and prepare separate
typing rules for each of the usage patterns. Thus, verification based on those type
systems would not be possible without heavy program annotations.

Type systems for deadlock-freedom have been studied extensively. As al-
ready mentioned, deadlock-freedom is weaker than lock-freedom, so that those
type systems alone cannot be used for lock-freedom analysis. For example, the
divergent process obtained by replacing fact it [n− 1, x× n, r] in Example 1 with
fact it [n, x× n, r] is deadlock-free.

The idea of reducing verification of lock-freedom to verification of robust ter-
mination is a reminiscence of Cook et al.’s work on reducing verification of live-
ness properties to that of fair termination [7]. The target language of their work
is a sequential, imperative language and is quite different from our language,
which is concurrent and allows dynamic creation of communication channels
and threads. The used techniques are also quite different; they use model check-
ing while we use types. It is not clear whether their technique can be effectively
used for verification of lock-freedom in our language.

There are a number of methods for proving termination of programs, and
they have been extensively studied in the context of term rewriting systems
and sequential programs. The point of parameterizing our type system for lock-
freedom by the robust termination property was to reuse those techniques for
termination verification, instead of developing a sophisticated type system that
can reason about both termination and deadlock within the single type system.

Parameterized, or hybrid, type systems of this kind presented in this paper
are fairly rare in the literature, mainly due to the difficulties in combining the
analyses. For instance, in Leroy’s modular module system [16] a type system
for module is presented that is parametric on the type system used for the core
language. This is quite different from ours, as the world on which the two type
systems operate—modules and core languages—are stratified, hence clearly sep-
arated. Among the approaches to combining type systems with other verification
methods for concurrent programs, the closest to ours is probably Chaki et al. [6],
where a type system is used to extract CCS processes as abstract models of the
π-calculus, and then a model checker verifies such models. In our case, by con-
trast, the parameterization in the typing rules make the different analyses closely
intertwined and make it possible local applications of the parameterized analy-
ses. Caires [5] recently proposed a generic type system for the π-calculus, whose
judgment is defined semantically; thus, the type system can be freely combined
with other verification methods. It is however generally difficult to develop a
completely semantic type system for complex properties like lock-freedom. Our
approach (where robust deadlock-freedom/termination/confluence are semanti-
cally defined) is a mixture of the syntactic and semantic approaches to defining
type systems.

7 Conclusion

We have proposed a hybrid type system for lock-freedom. Unlike the previous
type systems for lock-freedom, our type system can handle non-trivial recur-
sive communication structures and can be fully automated. The key develop-
ment was the special rules LT-Hyb and SLT-Hyb for combining four different
analyses: lock-freedom, robust deadlock-freedom, robust termination, and robust
confluence analyses. The rules allows local reasoning about deadlock-freedom,
termination and confluence, thus avoiding application of those analyses to the
whole program. We have also introduced the notion of robust termination, and
presented a generic method for strengthening type systems for termination to
guarantee robust termination.

Acknowledgment

We would like to thank Eijiro Sumii for discussions on this work, and Luca Aceto,
Xavier Leroy, and Benjamin Pierce for pointers to relevant work. We would also
like to thank Roberto Bruni and Maurizio Gabbrielli for comments on a draft of
this paper.

References

1. L. Acciai and M. Boreale. Responsiveness in process calculi. In Proc. of 11th
Annual Asian Computing Science Conference (ASIAN 2006), LNCS, 2006.

2. A. M. Ben-Amram and C. S. Lee. Program termination analysis in polynomial
time. ACM Trans. Prog. Lang. Syst., 29(1 (Article 5)), 2007.

3. P. Bidinger and A. B. Compagnoni. Pict correctness revisited. In Proceeds of
FMOODS 2007, volume 4468 of LNCS, pages 206–220. Springer-Verlag, 2007.

4. E. Brinksma, A. Rensink, and W. Volger. Fair testing. In Proceedings of CONCUR
1995, volume 962 of LNCS, pages 313–327. Springer-Verlag, 1995.

5. L. Caires. Logical semantics of types for concurrency. In Proceedings of CALCO
2007, volume 4624 of LNCS, pages 16–35. Springer-Verlag, 2007.

6. S. Chaki, S. Rajamani, and J. Rehof. Types as models: Model checking message-
passing programs. In Proc. of POPL, pages 45–57, 2002.

7. B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Y. Vardi. Proving
that programs eventually do something good. In Proc. of POPL, pages 265–276,
2007.

8. B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In Proc.
of PLDI, 2007.

9. Y. Deng and D. Sangiorgi. Ensuring termination by typability. Info. Comput.,
204(7):1045–1082, 2006.

10. N. Kobayashi. TyPiCal: A type-based static analyzer for the pi-calculus. Tool
available at http://www.kb.ecei.tohoku.ac.jp/∼koba/typical/.

11. N. Kobayashi. A type system for lock-free processes. Info. Comput., 177:122–159,
2002.

12. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4-5):291–347, 2005.

13. N. Kobayashi. A new type system for deadlock-free processes. In Proceedings of
CONCUR 2006, volume 4137 of LNCS, pages 233–247. Springer-Verlag, 2006.

14. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM
Trans. Prog. Lang. Syst., 21(5):914–947, 1999.

15. N. Kobayashi and D. Sangiorgi. A hybrid type system for lock-freedom of mo-
bile processes. An extended version. http://www.kb.ecei.tohoku.ac.jp/∼koba/
papers/hybrid.pdf, 2008.

16. X. Leroy. A modular module system. J. Funct. Program., 10(3):269–303, 2000.
17. D. Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theor. Com-

put. Sci., 167(2):235–274, 1996.
18. D. Sangiorgi. The name discipline of uniform receptiveness. Theor. Comput. Sci.,

221(1-2):457–493, 1999.
19. D. Sangiorgi. Termination of processes. Math. Struct. Comput. Sci., 16(1):1–39,

2006.
20. T. Terauchi and A. Aiken. A capability calculus for concurrency and determinism.

In Proceedings of CONCUR 2006, volume 4137 of LNCS, pages 218–232. Springer-
Verlag, 2006.

21. N. Yoshida. Type-based liveness guarantee in the presence of nontermination and
nondeterminism. Technical Report 2002-20, MSC Technical Report, University of
Leicester, April 2002.

22. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus.
Info. Comput., 191(2):145–202, 2004.

Appendix

A Appendix for Section 2

A.1 Transition Rules

aχ [̃b]. P
a[eb]
−→ P aχ(ỹ). P

a[eb]
−→ [ỹ 7→ b̃]P ∗aχ(ỹ). P

a[eb]
−→ ∗aχ(ỹ). P | [ỹ 7→ b̃]P

if true then P else Q
τ
−→ P if false then P else Q

τ
−→ Q

P
η
−→ Q BN(η) ∩ FN(R) = ∅

P |R
η
−→ Q |R

P
(νec) d[eb]
−→ Q a ∈ {b̃} \ {d, c̃}

(νa)P
(νa,ec) d[eb]
−→ Q

P1
(νec) a[eb]
−→ Q1 P2

a[eb]
−→ Q2 {c̃} ∩ FN(P2) = ∅

P1 |P2
τ
−→(νc̃) (Q1 |Q2)

P
η
−→ Q a 6∈ FN(η) ∪BN(η)

(νa)P
η
−→ (νa)Q

∗P |P
η
−→ Q P is not an input process

∗P
η
−→ Q

A.2 On the Difference between Weak and Strong Lock-Freedom

Experts in concurrency will easily recognize the difference between weak lock-
freedom and strong lock-freedom: Weak lock-freedom combines safety and live-
ness guarantees, by requiring that a system never reaches a state where a marked
action is at top-level, but there is no sequence of τ -actions in which the marked
action is consumed. On other hand, strong lock-freedom is a purely liveness prop-
erty that says that if a marked action is at top-level, the action will eventually
be consumed.

The example below (inspired by [8]) shows the difference between weak lock-
freedom and strong lock-freedom. Consider the following process P :

s[10]

| ∗f (x). s(x). (if x = 0 then r | s[0] else s[x− 1] | f [r])
| ∗g.s(x). s[10]

| ∗(νa) (f [a] | a◦)
| ∗g

There are two servers, which are listening on f and g respectively. The server
on f makes recursive calls while decrementing the value of s, until the value of
s reaches 0. When the value reaches 0, it sends a reply on r. On the other hand,
the server on g simply resets the value of s to 10. The process (νa) (f [a] | a◦) is
a client for the server.

The process is weakly lock-free, since after any number of τ -transitions, the
server on f can return a message on a if it is solely scheduled. The process is,
however, not strongly lock-free, because if requests on f and g are processed in

an interleaving manner (note that it is a strongly fair scheduling), then the value
of s may never reaches 0.

Another example of the difference between weak and strong lock-freedom is
the process in Example 4 of Appendix B.3. In fact, using our type systems, we
can prove weak lock-freedom of the process, but not its strong lock-freedom.

B Appendix for Section 3

B.1 Appendix for Section 3.1

Figure 1 summarizes (a slightly simplified version of) Kobayashi’s type system
for lock-freedom. See the extended version for futher explanation [15]. A tutorial
paper on type systems for the π-calculus is found at http://www.kb.ecei.

tohoku.ac.jp/∼koba/papers/tutorial-type-extended.pdf.

The usage 0 describes channels that cannot be used at all. The usage ?t1
t2

.U
describes channels that can be first used for input, and then used according to U .
The usage U1 |U2 describes channels that can be used according to U1 and U2,
possibly in parallel. The usage ∗U describes channels that can be used according
to U infinitely often.

The definition of the subusage relation U1 ≤ U2 (which is used in the defini-
tion of subtyping) is omitted. It means that U1 represents a more liberal usage
of channels, so that a channel of usage U1 may be used also according to U2.

For example, !t1t2 ≤!
t′1
t′
2

holds if t′1 ≤ t1 and t2 ≤ t′2. In the figure, the subusage

relation is used to define the relations Top(L) and L1 ≤ L2. The former means
that a name of type L need not be used, and the latter means that a name of
type L1 may be used as that of type L2. We also omit the definition of rel(U),
which is used in the rule T-New. It means that U is consistent in the sense that
for each capability in U , there is a corresponding obligation. We write rel(L)
if L is a channel type ♯U [L̃] and rel(U). We write rel(∆) if rel(∆(v)) for every
v ∈ dom(∆). Please refer to [15] for the definitions.

Here are some intuitions on typing rules.

In the rule LT-In, the type environment v : ♯?0
t

[L̃];∆ captures the condition
that v is first used for input, and then v and other channels are used accord-
ing to ∆. The obligation level of the input action on v is 0, since the input
is immediately performed, without relying on any capabilities. For example, if
a : ♯!1

∞

[Bool], b : ♯!0
∞

[Bool], x : Bool ⊢LT P , then, by using LT-In, we can obtain
a : ♯?0

2
.!1
∞

[Bool], b : ♯!3
∞

[Bool] ⊢LT a◦(x). P . Note that the obligation level of the

output action on b has been raised to 3, since a◦(x). P tries to exercise the ca-
pability of level 2 to receive a value from a, before fulfilling the obligation on
b.

The rule LT-Out for output is similar: v : ♯!0
t

[L̃];(∆1 | w̃ : ↑L̃) captures the

condition that v is first used for output. The part w̃ : ↑L̃ expresses the usage of
w̃ by the process that receives w̃. The operation ↑ ensures that the obligation
level of actions on channels w̃ is decreased by one when w̃ is passed on v. For

Syntax:

U (usages) ::= 0 | α
t1
t2

.U | (U1 |U2) | ∗U α (actions) ::=? |! t (levels) ∈ Nat ∪ {∞}

L (usage types) ::= Bool | ♯U [eL] ∆ (type environments) ::= v1 : L1, . . . , vn : Ln

Operations:

↑t0 = 0 ↑tα
t1
t2

.U = α
max(t,t1)
t2

.U ↑t(U1 |U2) = ↑tU1 | ↑
tU2 ↑t(∗U) = ∗↑tU

↑0 = 0 ↑αt1
t2

.U = α
t1+1
t2

.U ↑(U1 |U2) = ↑U1 | ↑U2 ↑(∗U) = ∗↑U

↑Bool = Bool ↑tBool = Bool ∗Bool = Bool Bool | Bool = Bool

↑(♯U [eL]) = ♯↑U [eL] ↑t(♯U [eL]) = ♯↑tU [eL] ∗(♯U [eL]) = ♯∗U [eL] ♯U1
[eL] | ♯U2

[eL] = ♯U1 | U2
[eL]

(∗∆)(v) = ∗(∆(v))

(∆1 |∆2)(v) = ∆1(v) |∆2(v) (∆1 |∆2 is defined only if dom(∆1) = dom(∆2))

(v : ♯
α

to
tc

[eL];∆)(w) =

(
♯
α

to
tc

.U
[eL] if w = v ∧ ∆(v) = ♯U [eL]

↑tc+1∆(w) if w ∈ dom(∆) \ {v}

Subtyping:

Top(Bool)

U ≤ 0

Top(U) Bool ≤ Bool

U ≤ U ′

♯U [eL] ≤ ♯U′ [eL]

Li ≤ L′i (for i = 1, . . . , m) Top(Lk) (for k = m + 1, . . . , n)

v1 : L1, . . . , vm : Lm, vm+1 : Lm+1, . . . , vn : Ln ≤ v1 : L′1, . . . , vm : L′m

Typing:

∆1 ⊢LT P tc = ∞ ⇒ χ = •

v : ♯!0
tc

[eL];(∆1 | ew : ↑eL) ⊢LT vχ[ew]. P

(LT-Out)

∆, ey : eL ⊢LT P tc = ∞ ⇒ χ = •

v : ♯?0
tc

[eL];∆ ⊢LT vχ(ey). P

(LT-In)

∅ ⊢LT 0

(LT-Zero)

∆1 ⊢LT P1 ∆2 ⊢LT P2

∆1 |∆2 ⊢LT P1 |P2

(LT-Par)

∆′ ⊢LT P ∆ ≤ ∆′

∆ ⊢LT P

(LT-Weak)

∆ ⊢LT P

∗∆ ⊢LT ∗P
(LT-Rep)

∆, a : ♯U [eL] ⊢LT P rel(U)

∆ ⊢LT (νa)P

(LT-New)

∆ ⊢LT P ∆ ⊢LT Q

∆ | (v : Bool) ⊢LT if v then P else Q

(LT-If)

Fig. 1. Kobayashi’s type system for lock-freedom [12]

example, let ∆ be:
a : ♯?∞

0
| !∞

0
[♯!2

∞

[]], b : ♯?∞
0

| !∞
0

[♯!1
∞

[]].

Then we can derive ∆ ⊢LT a(x). b[x], but neither ∆ ⊢LT a(x). a[x] nor ∆ ⊢LT
b(x). a[x]. This condition prevents a process from infinitely delegating obliga-
tions.

In the rule LT-New, the condition rel(U) checks that each capability of an
action is matched by an obligation of its co-action. This serves as a ’sanity check’
for assume-guarantee reasoning. For example, we can derive

b : ♯!1
1
| ?1

1
[Bool] ⊢LT (νa) (a◦(x). b[x] | a[true]. b◦(x)),

from
a : ♯?0

0
| !0

0
[Bool], b : ♯!1

1
| ?1

1
[Bool] ⊢LT a◦(x). b[x] | a[true]. b◦(x),

but we cannot derive

b : ♯!1
∞

| ?0
0
[Bool] ⊢LT (νa) (a◦(x). b[x] | b◦(x). a[x])

from
a : ♯?0

0
| !1

∞

[Bool], b : ♯!1
∞

| ?0
0
[Bool] ⊢LT a◦(x). b[x] | b◦(x). a[x]

because the input obligation on a is not matched by the output obligation on a.
The rule T-Weak allows us to replace a type environment ∆ with ∆′ if ∆′

represents a more liberal usage of channels. For example, from a : ♯!0
∞

[Bool] ⊢LT
P , we can derive a : ♯!1

0
[Bool] ⊢LT P .

B.2 Appendix for Section 3.2

The realtion ∆
η
−→ ∆′ used in the definition of robust deadlock-freedom is

defined by:

∆
τ
−→ ∆

U
τ
−→ U ′

∆, a : ♯U [L̃]
τ
−→ ∆, a : ♯U ′ [L̃]

U
?
−→ U ′

∆, a : ♯U [L̃]
a[eb]
−→ ∆ | b̃ : L̃, a : ♯U ′ [L̃]

U
!
−→ U ′ ∆, c̃ : L̃c ≤ ∆′ | b̃ : L̃ rel(L̃c)

∆, a : ♯U [L̃]
(νec) a[eb]
−→ ∆′, a : ♯U ′ [L̃]

Here, the transition relation U
lu−→ U ′ is defined as follows.

Definition 8 The transition relation U
lu−→ U ′ (where lu ∈ {!, ?, τ}) is the least

relation closed under the following rules:

αt1
t2

.U
α
−→ U

∗U |U
lu−→ U ′

∗U
lu−→ U ′

U1
lu−→ U ′

1

U1 |U2
lu−→ U ′

1 |U2

U2
lu−→ U ′

2

U1 |U2
lu−→ U1 |U

′
2

U1
!
−→ U ′

1 U2
?
−→ U ′

2

U1 |U2
τ
−→ U ′

1 |U
′
2

U1
?
−→ U ′

1 U2
!
−→ U ′

2

U1 |U2
τ
−→ U ′

1 |U
′
2

The condition nocap(∆) used in Section 3.3 is defined as follows.

Definition 9 (nocap) We write nocap(U) when all the capability levels in U
are ∞, and write noob(U) when all the obligation levels in U are ∞. The rela-
tions are extended to those on types by the following rules.

nocap(Bool)
nocap(U) mode(U, ?)⇒ nocap(L̃) mode(U, !)⇒ noob(L̃)

nocap(♯U [L̃])

noob(Bool)
noob(U) mode(U, ?)⇒ noob(L̃) mode(U, !)⇒ nocap(L̃)

noob(♯U [L̃])
Here, mode(U, α) means that U contains α. We write nocap(∆) when nocap(∆(v))
for any v ∈ dom(∆).

Notice the interplay between nocap and noob. For example, noob(L) is re-
quired for nocap(♯!0

∞

[L]), since L is the type of a channel that is exported to the
environment. On the other hand, nocap(L) is required for nocap(♯?0

∞

[L]) since L

is the type of a channel that is imported from the environment.

Example 2. nocap(♯?0
∞

[♯!0
∞

[]]) and nocap(♯!0
∞

[♯!∞
0

[]]) hold. nocap(♯!0
∞

[♯!0
∞

[]]) does
not hold.

B.3 Further Examples

This section gives more complex examples.

Example 3. Consider the following process BSystem.

BServer
def
= (νbcastit) (∗bcast(z). bcastit[z]

| ∗bcastit(z). if null(z) then 0
else let x = hd(z) in (x |x | bcastit[tl(z)]))

BSystem
def
= (νbcast, rec) (BServer

| ∗rec(z). if null(z) then 0
else let x = hd(z) in (x◦ | rec[tl(z)]))

| (νc1, c2, c3) (rec◦[c1; c2; c3] | bcast
◦
[c1; c2; c3] | c1

◦ | c2
◦ | c3

◦)

This example uses lists as first-order values, with the usual operations for
them. The system has two servers: the server bcast(z), which broadcast a mes-
sage twice to each channel in the list z; the server rec(z), which listens on all
the channels in the list z. The two services are invoked with a list made of three
channels c1, c2, c3, on which the clients also receive. All receive messages, in the
server rec and in the clients, are expected to succeed. The success of the receive
operation relies on the correct inspection of the lists by the two recursive servers,
including the correct use of each channel in the lists (for instance, lock-freedom
would fail if bcast did not use, or used only once, some of the channels in its
list).

Let ∆ = bcast : ♯∗?0
∞

[♯!1
∞

| !1
∞

[] List]. Then, we have:

∆ |=RD BServer Er(∆) |=RTer BServer Er(∆) |=RConf BServer nocap(∆)

Thus, by using SLT-Hyb, we get ∆ ⊢SLT BServer. By applying the rules for the
LT type system to the rest of the process, we get ∅ ⊢SLT BSystem.

Example 4. This example shows a binary tree data structure, offering services for
inserting and searching natural numbers. Each node of the tree is implemented
as a process that has: a state, given by the integer stored in the node and
pointers to the left and right subtree and that contain, respectively, smaller and
greater integers; channels for the insert and search operations. In Figure 2, G is
a generator of new nodes, which can then grow and originate a tree, and where:
i and s will be the insertion and search channels; state stores the state of the
node. Initially the node is a leaf. TInit is the initial tree, with an empty state
and public channels insert and search to communicate with the environment.
Once received a query for an integer n, the tree lets the request ripple down the
nodes, following the order on the integers to find the right path, until either t is
found in a node, or the end of the tree is reached, which, in the case of an insert,
means that n is a new integer and the node a leaf, and thus the leaf becomes a
node that stores n and two new leaves are created. There is parallelism in the
system: many requests can be rippling down the tree at the same time; in doing
so, requests can even overtake each other.

Let ∆ be insert : ♯∗?0
∞

[Nat, ♯!1
∞

[]], search : ♯∗?0
∞

[Nat, ♯!1
∞

[Bool]]. Then, we have:

∆ |=RD TInit Er (∆) |=RTer TInit nocap(∆)

Thus, by using LT-Hyb, we obtain ∆ ⊢LT TInit. By applying rules for LT to
the rest of the system, we get ∆ ⊢LT Sys.

Note that SLT-Hyb is not applicable since TInit is not robustly confluent
(because, when multiple requests arrive simultaneously, there can be a race on
the channel state). Indeed, the example is NOT strongly lock-free! A search
request may never be replied if the request is overtaken by insertion requests so
often that the tree grows faster than the search request goes down the tree.

Example 5. Figure 3 shows a strongly lock-free implementation of binary search
trees. The server TInit′ receives requests along channel a one by one. A request

G
def
= ∗newtree(i, s).(νstate)

“
state[leaf]

| ∗i(n, r).state(x). /*** insertion ***/

match x with

leaf →
(νleft i, left s, right i, right s)“
newtree[left i, left s] | newtree[right i, right s]

| state[node(n, left i, left s, right i, right s)] | r
”

||node(n1, il, sl, ir, sr) →“
if n = n1 then r[] else if n < n1 then il [n, r] else ir [n, r]

| state[x]
”

| ∗s(n, r).state(x).
“
state[x] /*** search ***/

|match x with leaf → r[true]
|| node(n1, il, sl, ir, sr) →

if n1 = n then r[false] else if n < n1 then sl [n, r] else sr [n, r])
”

TInit
def
= (νnewtree) (G | newtree[insert, search])

Sys
def
= (νinsert, search)

(TInit | ∗(νr1) (insert
◦
[rnd(), r1] | r1

◦) | ∗(νr2) (search
◦
[rnd(), r2] | r2

◦(x)))

Fig. 2. A binary tree

is either of the form insert(n, r) or search(n, r). Unlike the system in Exam-
ple 4, requests cannot be overtaken, although there is still parallelism (multiple
requests can go down the tree simultaneously). TInit′ is robustly confluent; note
that the only τ -transitions inside TInit′ are on channels leaf, node, left, and
right, and that the first two of them are replicated input channels, and the
others are linearized channels. Thus, we can derive

a : ♯∗?1
∞

[L] ⊢SLT TInit
′

where

L
def
= 〈insert : [Nat, ♯!2

∞

[]], search : [Nat, ♯!2
∞

[Nat]]〉.

Here, L is a variant type describing requests of the form insert(n, r) or search(n, r).
By using the typing rules for SLT, we can derive:

∅ ⊢SLT Sys
′.

Thus, we can verify that Sys′ is strongly lock-free.

C Appendix for Section 4

In this section, we show how f -admissibility follows from a subject reduction
property for Ter and injectivity of f . We write CTypes(Θ) for the set of channel
types used in Θ.

G′ def
= ∗leaf(x).x(req).

(match req with

insert(n, r) → (νleft, right) (r | node
◦
[n, x,left, right] | leaf

◦
[left] | leaf

◦
[right])

|| search(n, r) → r[false] | leaf
◦
[x])

| ∗node(n1, x, xl, xr).x(req).
(match req with

insert(n, r) →
if n = n1 then r | node

◦
[n1, x, xl, xr]

else if n < n1 then xl
◦[insert(n, r)]. node

◦
[n1, x, xl, xr]

else xr
◦[insert(n, r)]. node

◦
[n1, x, xl, xr]

|| search(n, r) →
if n = n1 then r[true] | node

◦
[n1, x, xl, xr]

else if n < n1 then xl
◦[search(n, r)]. node

◦
[n1, x, xl, xr]

else xr
◦[search(n, r)]. node

◦
[n1, x, xl, xr])

TInit′
def
= (νleaf, node) (G′ | leaf

◦
[a])

Sys′
def
= (νa) (TInit′ | ∗(νr1) (a◦[insert(rnd(), r1)] | r1

◦) | ∗(νr2) (a◦[search(rnd(), r2)] | r2
◦(x)))

Fig. 3. A strongly lock-free implementation of binary trees

Lemma 1. Given a type system Ter, and a function f from the types of Ter
to those of ST (and mapping Bool onto Bool), suppose f and Ter satisfy the
following conditions:

1. whenever Θ ⊢Ter P also f(Θ) ⊢ST P ;

2. whenever Θ ⊢Ter P , with Θ closed, and P
η
−→ P ′ and, furthermore, when η

is an input, all names received are fresh (i.e., these names do not appear in
Θ), then there is Θ′ closed s.t. Θ′ ⊢Ter P ′ with CTypes(Θ′) ⊆ CTypes(Θ).
Moreover, in the case of input η = a[ṽ], it should be f(Θ)(a) = ♯[f(Θ′)(ṽ)]
and Θ(p) = Θ′(p) for all names p 6∈ {a, ṽ}.

3. whenever Θ ⊢Ter P and Θ(p) = Θ(q) also Θ ⊢Ter [q 7→ p]P ;

Then for any Θ and P , if f is injective on CTypes(Θ) then Θ ⊢Ter P is f -
admissible.

In the lemma, the first condition ensures us that f converts a valid judgment
in Ter into one valid in ST. The second condition is a Subject-Reduction prop-
erty for Ter on transitions; the remaining requirements, such as CTypes(Θ′) ⊆
CTypes(Θ), essentially ensure that the types of fresh names received in an input
or emitted in an output along a channel a can be deduced from the type of a. The
third condition says that Ter maintains typability under substitution of names
with names of the same type. In the conclusions, the injectivity condition on f is
only on the initial type environment for P . It does not affect other environments
that appear in the derivation of Θ ⊢Ter P ; therefore the types of the restricted
names of P need not be subject to the condition.

Lemma 1 is applicable to the system for termination in [19], and to all but
one of the four type systems in [9] (the function f of Lemma 1 can be taken to
be the function that strips off termination information).

In the full paper [15] we discuss some further improvements to the lemma,
weakening the main constraints in it: first of all the injectivity of f , and also the
substitution condition (3). This is done by appealing to methods for controlling
the aliasing set of a variable (the set of names with which the variable could be
instantiated) Note that there are dialects of the π-calculus, such as πI, where
aliasing is forbidden altogether since only fresh names can be transmitted; in
these languages both injectivity and condition (3) can be dropped. Thus the
lemma becomes applicable to all type systems in [9], and to Yoshida, Berger,
and Honda’s system for termination [22].

